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Tutorial I:
Identical Quantum Particles

Reminders

1 When are quantum particles said to be identical? Why are identical quantum particles in principle
indistinguishable?

2 Show that the only possible states for a system of two identical quantum particles are symmetric
or antisymmetric with respect to the exchange of the quantum numbers characterizing the parti-
cles. Infer the celebrated Pauli exclusion principle.

3 How do we call identical quantum particles forming a system with symmetric states? With anti-
symmetric states? Give examples of elementary particles, composite particles, and quasiparticles
belonging to each family.

4 Recall the statement of the spin-statistics theorem.

Spin States for Identical Quantum Particles

5 How many independent symmetric, and then antisymmetric, spin states does a system of two
identical quantum particles admit?

6 Particularize the results of Question 5 to the case where the particles are electrons. After explic-
iting it, label each of the independent symmetric and antisymmetric two-electron spin states in
terms of its total spin and its projection.

7 Which natural degree of freedom must the electron spin be combined to so that your answers to
Question 6 are not in contradiction with the Pauli exclusion principle?

Combined Position and Spin States for Identical Quantum
Particles: Exchange Interaction in the Hydrogen Molecule

We model the hydrogen molecule as a system of two electrons with positions r1 and r2 in the elec-
trostatic potentials of two fixed protons with positions R1 and R2. We denote by ΨRj

(ri) the
ground-state position wavefunction of the electron i ∈ {1, 2} in the electrostatic potential of the
proton j ∈ {1, 2} and introduce the overlap integral

S =

∫
Ψ∗R1

(r) ΨR2
(r) d3r.

Of course, the two electrons, as well as the two protons, electrostatically interact with each other.
Finally, we assume that it is energetically defavorable to find the two electrons in the vicinity of
the same proton.
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8 Why is the fixed-proton approximation licit? In this case, write down the Hamiltonian Ĥ of the
hydrogen molecule.

9 What are the name, the expression, and the approximate value of the most probable distance
between the proton and the electron of a hydrogen atom in its ground state? Reduce Ĥ to a sim-
plified Hamiltonian Ĥ0 when the distance between the protons of the hydrogen molecule is much
larger than this length scale. Find the wavefunction Ψ0(r1, r2) and the energy E0 of the ground
state of Ĥ0. You will not forget to account for the spin of the electrons and will denote by ε0 the
energy of a single hydrogen atom in its ground state.

10 We now come back to the complete Hamiltonian of Question 8. Express the wavefunction Ψ(r1, r2)
of its ground state in terms of appropriate combinations of position and spin wavefunctions. Then,
after showing that ∫

Ψ∗Rj
(r1) Ψ∗Ri

(r2) Ĥ ΨR`
(r1) ΨRk

(r2) d3r1 d3r2

=

∫
Ψ∗Ri

(r1) Ψ∗Rj
(r2) Ĥ ΨRk

(r1) ΨR`
(r2) d3r1 d3r2

for all (i, j, k, `) ∈ {1, 2}4 such that i 6= j and k 6= `, demonstrate that the associated energy

E =

∫
Ψ∗(r1, r2) Ĥ Ψ(r1, r2) d3r1 d3r2

takes the form

E = E0 +
C ± J

1± |S|2
, where

C =

∫
Ψ∗R1

(r1) Ψ∗R2
(r2) (Ĥ − Ĥ0) ΨR1(r1) ΨR2(r2) d3r1 d3r2 and

J =

∫
Ψ∗R1

(r1) Ψ∗R2
(r2) (Ĥ − Ĥ0) ΨR2(r1) ΨR1(r2) d3r1 d3r2.

The integrals C and J are respectively called the Coulomb integral and the exchange integral.

11 We denote by Ŝi the spin operator associated to the electron i ∈ {1, 2}. What are the eigenvalues
of (Ŝ1 + Ŝ2)

2 and Ŝi
2? Infer the ones of Ŝ1 · Ŝ2 and deduce that the ground state of Ĥ is also an

eigenstate of the Heisenberg Hamiltonian

ĤH = E0 − J Ŝ1 · Ŝ2, where J =
2

~2
J − C |S|2

1− |S|4
.

Comment the expression of ĤH given above.

12 Establish a simple expression for the exchange constant J in the asymptotic limit of Question 9,
assuming here that Ĥ − Ĥ0, although small in this limit, is nonzero. In this case, what sign must
the exchange integral J have in order for the coupling between Ŝ1 and Ŝ2 to be ferromagnetic?
Antiferromagnetic?
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Tutorial II:
Quantum Harmonic Oscillator

Reminders

We consider a one-dimensional quantum harmonic oscillator1 of mass m and angular frequency ω.

1 Recall the commutation relation between the position operator x̂ and the momentum operator p̂
of the system. Express its Hamiltonian Ĥ in terms of x̂ and p̂. Verify that ~ω,

x0 =

√
~
mω

, and p0 =
√
~mω

are respectively the typical energy, position, and momentum scales of the problem.

2 We now introduce the dimensionless operator

â =
1√
2

(
x̂

x0
+ i

p̂

p0

)
.

Is â Hermitian? Establish the commutation relation between â and its Hermitian conjugate â†.
Express Ĥ in terms of the operator

n̂ = â† â.

Infer that Ĥ and n̂ share the same eigenstates.

3 We denote by |n〉 a unit eigenstate of n̂ with the eigenvalue n. Show that n > 0. Then, demon-
strate that

â |0〉 = 0 and that for n > 0, n̂ âk |n〉 = (n− k) âk |n〉

for all k ∈ J1, knK, where kn is to determine as a function of n. Infer that n ∈ N. What does

E =

{
~ω
(
n+

1

2

)
, n ∈ N

}
correspond to?

4 Demonstrate that for all n ∈ N,

â |n+ 1〉 =
√
n+ 1 |n〉 and â† |n〉 =

√
n+ 1 |n+ 1〉.

Justify the namings “annihilation operator,”“creation operator,” and “number operator” for â, â†,
and n̂, respectively. From the second of the preceding identities, infer that any eigenstate |n〉 of Ĥ
can be expressed in terms of the ground state |0〉 as

|n〉 =
(â†)n√
n!
|0〉.

1Henceforth denoted by “QHO” in the following.
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5 Find the ground-state wavefunction ψ0(x) of the system and show that the wavefunction ψn(x) of
its nth eigenstate relates to ψ0(x) as

ψn(x) =
1√

2n n!

(
x

x0
− x0

d

dx

)n
ψ0(x).

6 The potential V (x) in which the quantum particle of mass m evolves is often not harmonic. Nev-
ertheless, it frequently presents at least one minimum. We denote by x∗ the position of this min-
imum. Taylor expand V (x) around x = x∗ up to the second order. Why does the QHO model
constitute a building block in quantum mechanics?

7 What is the energy spectrum of a quantum particle of mass m trapped in a harmonic potential of
the form

V ({xi}di=1) =
m

2

d∑
i=1

ωi
2 xi

2?

The Cartesian-coordinate set {xi}di=1 specifies the position of the particle in dimension d > 2 and
the angular frequencies of the set {ωi}di=1 are all different, which breaks isotropy.

8 Recall the expression of the Hamiltonian of a gas of noninteracting identical quantum particles
(bosons or fermions) in the second-quantization language. Conclude, again, on the importance of
the QHO model in quantum mechanics.

Statistical Physics of the QHO: The Black-Body Spectrum

We consider a cubic cavity of size L containing atoms and photons in thermal equilibrium at the
temperature T . The number of atoms is N and each of them is simply modeled as a two-level
system whose excited state |e〉 is separated from the ground state |g〉 by the energy ~ω. From
Questions 9 to 12, we search for the expression of n, the average number of photons with angu-
lar frequency ω, in two different ways. Then, from Questions 13 to 16, we search for the one of
dE/dω, the energy spectral density of electromagnetic modes in the cavity, and discuss the cele-
brated ultraviolet-catastrophe prediction of late 19th century/early 20th century.

9 Express the ratio of Ne, the number of atoms in the excited state, to Ng, the number of atoms in
the ground state, as a function of ~ω and kB T , where kB is the Boltzmann constant.

10 What is the photon absorption rate due to atoms in the ground state, Γ↑? Same question for Γ↓,
the photon emission rate due to atoms in the excited state. You will not forget to account for
spontaneous emission.

11 In thermal equilibrium, the upward and downward transition rates must balance. Deduce an ex-
pression for n. How is this statistical distribution called? What is its behavior when ~ω � kB T?
What does this limit correspond to?

12 Assuming that the gas of photons with angular frequency ω behaves as a collection of QHOs, ex-
press its Hamiltonian Ĥ as a function of ~ω and n̂, the operator counting the photons with angu-
lar frequency ω. Then, find again the expression of n as the expectation value of n̂ in the canonical
ensemble:

n = 〈n̂〉 =
tr{n̂ exp[−Ĥ/(kB T )]}
tr{exp[−Ĥ/(kB T )]}

.
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13 The position wavefunction of a photon in the cavity consists in a plane wave with wavevector k:

ψk(r) =
eik·r

L3/2
.

Assuming that the cavity is provided with the periodic boundary conditions, show that k is quan-
tized (the origin of the coordinates coincides with the center of the box). How many electromag-
netic modes does some domain of volume d3k in wavevector space contain? Do not forget that
each photon admits two independent polarization states.

14 Despite the presence of atoms, we assume that the dispersion relation ω(k) of the photons in the
cavity is the one they have in vacuum. Recall it. How many electromagnetic modes does some
angular-frequency interval of length dω contain?

15 Combine the preceding result with the expression for n established in Questions 11 and 12 to
obtain the energy dE of the electromagnetic modes lying in some angular-frequency interval of
length dω. What is the name of the energy spectral density dE/dω you just found? Of its classical
approximation (dE/dω)class?

16 Plot on a same graph dE/dω and (dE/dω)class as a function of ~ω/(kB T ). Comment.

Entertainment

We consider a gas of free identical fermions (bosons) of mass m and spin s in a cubic box of size L
provided with the periodic boundary conditions and in thermal and chemical equilibrium with an
external reservoir of energy and particles. We respectively denote by T and µ the temperature and
the chemical potential of the gas. Show that the anticommutation (commutation) relations verified
by the ladder operators of the fermionic (bosonic) system lead to

〈n̂k〉(F
B ) =

2 s+ 1

exp[(Ek − µ)/(kB T )] ( +
− ) 1

for the average number of fermions (bosons) in the quantum state with wavevector k, where the
energy Ek = ~2 k2/(2m) and kB is the Boltzmann constant.
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Tutorial III:
QHO Coherent States

In this tutorial, we consider a one-dimensional QHO of mass m and angular frequency ω. In Tuto-
rial II, you showed that its Hamiltonian

Ĥ =
mω2

2
x̂2 +

1

2m
p̂2

can be expressed in terms of the annihilation operator

â =

√
mω

2 ~
x̂+ i

√
1

2 ~mω
p̂

and the creation operator â† as

Ĥ = ~ω
(
â† â+

1

2

)
,

the eigenstates |n〉 and the corresponding eigenvalues ~ω (n+ 1/2) of which are labeled by n ∈ N.
The oscillator states |n〉 are usually called “number states” or “Fock states.” Our goal here is to
study another family of oscillator states called “coherent states.”

Definition and Properties

Restricting to the case of the one-dimensional QHO considered above, a coherent state |α〉 is math-
ematically defined to be the (unique) eigenstate of the annihilation operator associated to the
eigenvalue α:

â |α〉 = α |α〉.

1 Is â Hermitian? Infer the set in which the domain of definition of its spectrum is included.

2 How does a coherent state |α〉 decompose on the (orthonormal) number-state basis {|n〉, n ∈ N}?
You will ensure that |α〉 is normalized to unity.

3 Show that the number of particles in a coherent state |α〉 is distributed according to a Poisson law,
the parameter of which you will determine. How do its mean value and its variance relate to the
latter? Give examples of physical systems characterized by a Poisson distribution.

4 Explicitly show that two different coherent states |α〉 and |β〉 are not orthogonal. Is it in accor-
dance with your answer to Question 1? Under which constraint on the complex numbers α and β
do |α〉 and |β〉 become orthogonal?

5 Establish that the coherent states satisfy the closure relation∫
|α〉〈α| d2α = 1,

where d2α is a shorthand notation for dRe(α) dIm(α)/π.
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6 How does a number state |n〉 decompose on the coherent-state set {|α〉, α ∈ C}? Is such a decom-
position unique?

7 At the time t = 0, we prepare the system in the coherent state

|ψα(0)〉 = |α〉.

What is the state |ψα(t)〉 of the system at a time t > 0? Is this state coherent?

8 Calculate the mean values xα(t) and pα(t) and the standard deviations ∆xα(t) and ∆pα(t) of the
position and momentum operators x̂ and p̂ in the state |ψα(t)〉 of Question 7. After represent-
ing α 6= 0 in polar coordinates, place the point (xα(t), pα(t)) and its uncertainty bars ∆xα(t) and
∆pα(t) on a diagram representing the phase space, first for t = 0 and then for t > 0.

9 Calculate the product ∆xα(t) ∆pα(t) and infer the shape of |ψα(t)〉 in the position or momentum
representation.

10 What do ∆xα(t)/xα(t) and ∆pα(t)/pα(t) tend to when |α| → ∞? What does it mean?

Alternative Definition

For any complex number α, we define the operator

D̂(α) = exp(α â† − α∗ â).

We also recall that the identity

exp(Â+ B̂) = exp(Â) exp(B̂) exp(−[Â, B̂]/2)

holds if the operators Â and B̂ commute with their commutator.

11 What is D̂(0) equal to? For any complex numbers α and β, show that

D̂(α)† = D̂(−α),

that D̂(α) is unitary, and that

D̂(α) D̂(β) = e−iIm(α∗β) D̂(α + β).

12 Demonstrate that any coherent state |α〉 may be deduced from the vacuum state |0〉 through

|α〉 = D̂(α) |0〉,

which may be used as a definition for |α〉.

13 For any complex number α, justify the naming “displacement operator” for D̂(α) by demonstrating
that the effect of applying D̂(α) in a similarity transformation of â results in the displacement of
the latter with a magnitude ±α, that is,

D̂(α)−1 â D̂(α) = â+ α and D̂(α) â D̂(α)−1 = â− α.
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Quantum Mechanics in the Interaction Picture

We consider a quantum system whose dynamics in the Schrödinger picture is ruled by the Hamil-
tonian Ĥ0 + Ĥ1(t), where Ĥ0 is independent of time and well understood and Ĥ1(t) describes some
harder-to-analyze perturbation to the system. By definition, the operators ÔI(t) and the states
|ψI(t)〉 in the interaction picture relate to the operators Ô and the states |ψ(t)〉 in the Schrödinger
picture as

ÔI(t) = exp(i Ĥ0 t/~) Ô exp(−i Ĥ0 t/~) and |ψI(t)〉 = exp(i Ĥ0 t/~) |ψ(t)〉.

14 Write down the time-evolution equations of ÔI(t) and |ψI(t)〉. Why is the interaction picture use-
ful?

15 Verify that the expectation-value operation is independent of the picture considered (interaction or
Schrödinger), that is,

〈ψI(t)| ÔI(t) |ψI(t)〉 = 〈ψ(t)| Ô |ψ(t)〉.

Trapped Ion Coupled to an Optical Field

An ion of mass m and charge q moves along the x axis in a harmonic potential of angular fre-
quency ω. It is furthermore immersed in a classical electric field of the form

E(t) = E0 sin(ω t− φ) ex (E0 ∈ R).

Treated in a quantum mechanical way, the electric dipole moment

p̂ = q x̂ ex

of the ion couples to E(t) through the interaction Hamiltonian

Ĥ1(t) = −p̂ · E(t).

16 Express the free Hamiltonian Ĥ0 and the interaction Hamiltonian in the interaction picture (Ĥ1)I(t)
in terms of the annihilation and creation operators â and â† of the ion.

17 Show that (Ĥ1)I(t) becomes time-independent in the secular approximation.

18 At the time t = 0, we assume that the ion is in the vacuum state:

|ψI(0)〉 = |0〉.

In the secular approximation considered in the preceding question, demonstrate that the ion must
be in the coherent state

|ψI(t)〉 =

∣∣∣∣− q E0 eiφ

2
√

2 ~mω
t

〉
a while later.
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Tutorial IV:
Low-Energy Quantum Scattering

Reminders

A quantum particle of mass m, energy E, and wavenumber

k = |k| =
√

2mE

~

scatters off a time-independent central potential V (r = |r|) of scattering length a. Its wavefunction
Ψ(r) is solution of the stationary Schrödinger equation

EΨ = − ~2

2m
∆Ψ + V (r) Ψ = − ~2

2m

[
1

r

∂2

∂r2
(rΨ) +

1

r2
∆S2Ψ

]
+ V (r) Ψ,

where ∆S2 denotes the Laplacian on the unit 2-sphere S2.

1 The length a characterizes the scattering of the particle in the low-energy limit. Express the latter
in terms of k and a. What does V (r) tend to in the large-distance limit r � |a|?

2 In the low-energy limit, show that

ψ(r) = r

∫
S2

Ψ(r) d2Ω

satisfy the following identities:

d2ψ

dr2
=

2m

~2
V (r)ψ, ψ(r = 0) = 0, and ψ(r � |a|) ' Ar +B,

where A and B are two arbitrary constants.

3 In the low-energy and large-distance limits, we recall that Ψ(r) may be cast (up to some normaliza-
tion factor) in the form

Ψ(r) ' eik·r + f(k)
eikr

r
.

Provide a physical interpretation of this expansion. What is the name of f(k)? How does it relate
to a? Infer that

ψ(r � |a|) ' C (r − a),

where C is a constant.

4 What is the condition satisfied by the maximum of V (r), m, and a for the low-energy Born approx-
imation to be applicable? What is the expression of a in this limit?
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Hard-Sphere Potential

In this problem, the potential introduced in the preceding section reads

V (r) =

{
V0 > 0 if r 6 R

0 if r > R
.

5 Determine the scattering length a as a function of V0 and R. What is its sign? Show that one
recovers the result predicted by the Born theory when V0 → 0.

6 What happens to a when V0 →∞, R being kept constant? In this case, V (r) is said to be of hard
sphere.

7 What happens to a when V0 →∞ and R→ 0,∫
V (r) d3r =

4π V0R
3

3

being kept constant? In this case,

V (r) =
4π V0R

3

3
δ(3)(r),

where δ(3) is the three-dimensional Dirac “function.”

Square-Well Potential

We consider the same problem as before except that we now assume that V0 6 0. In this case, V (r)
is a square-well-shaped function of r.

8 Show that the scattering length a displays discrete resonances as one decreases the value of V0, R
being kept constant. Relate the position of these resonances to the number of bound states in the
potential V (r).

9 Recover the result predicted by the Born theory when V0 → 0. What is the sign of a in this case?
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Tutorial V:
Imperfect Bose Gas

An ultracold quantum gas of N interacting bosonic atoms of mass m with no apparent internal
degrees of freedom is contained in a large cubic cavity of size L provided with the periodic bound-
ary conditions (the origin of the coordinates coincides with the center of the box). The “first-
quantization” Hamiltonian of the quantum many-body system is expressed as a function of the
position and momentum operators r̂1, r̂2, . . . , r̂N and p̂1, p̂2, . . . , p̂N of the atoms as

Ĥ =
N∑
i=1

p̂i
2

2m
+

1

2

N∑
i=1

N∑
j=1
j 6=i

V (|r̂i − r̂j|),

where V (|r̂i − r̂j|) describes the interaction between the atoms i and j 6= i.

Preliminaries

1 We generically denote by {ψλ(r)}λ the orthonormal and complete set (assumed to be discrete for
the sake of simplicity) of the single-particle wavefunctions. The operator destroying an atom at the
point r may be expanded as

Ψ̂(r) =
∑
λ

ψλ(r) â(λ),

where â(λ) is the annihilation operator in the single-particle quantum state of wavefunction ψλ(r).
Verify that

[Ψ̂(r), Ψ̂†(r′)] = δ(3)(r− r′) and [Ψ̂(r), Ψ̂(r′)] = 0,

where the Hermitian conjugate of Ψ̂(r), Ψ̂†(r), creates an atom at the point r, and δ(3) is the three-
dimensional Dirac “function.”

2 Establish that the “second-quantization” Hamiltonian Ĥ and the atom-number operator N̂ of the
quantum many-body system respectively read

Ĥ = − ~2

2m

∫
Ψ̂†(r) ∆Ψ̂(r) d3r +

1

2

∫
Ψ̂†(r) Ψ̂†(r′)V (|r− r′|) Ψ̂(r′) Ψ̂(r) d3r d3r′ and

N̂ =

∫
Ψ̂†(r) Ψ̂(r) d3r.

Reexpress the kinetic term in Ĥ in the light of the identity∫
f1(r) ∆f2(r) d3r = −

∫
∇f1(r) · ∇f2(r) d3r,

which you will indicate the condition of validity. In the following, we will deal with the grand-
canonical version of Ĥ,

K̂ = Ĥ − µ N̂,

where µ is the chemical potential of the gas.
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3 The gas is assumed to be dilute. In this case, justify that V (|r− r′|) can be approximated by a
contact potential:

V (|r− r′|) ' g δ(3)(r− r′),

where g is a parameter describing the atom-atom interactions which we will not derive the expres-
sion. Accordingly simplify the expression of K̂ defined in Question 2. We finally suppose that the
atoms repulsively interact with each other. What is the sign of g in this case?

4 The gas is assumed to be homogeneous. In this case, justify that the single-particle wavefunctions
are plane waves with discretized wavevectors:

ψλ(r) = ψk(r) =
eik·r

L3/2
with k ∈ 2π

L
Z3.

Demonstrate that this implies the useful approximations

∑
k

f(k) '
(
L

2π

)3 ∫
f(k) d3k and δk,k′ '

(
2π

L

)3

δ(3)(k− k′).

Bogoliubov Hamiltonian

As bosons, the atoms of the gas tend to accumulate in the quantum state with wavevector k = 0
as their temperature T is lowered down to some critical value Tc. Provided they weakly interact,
which we assume from now on, the occupancy N0 of the k = 0 state becomes of the order of N at
very low temperature, leaving the k 6= 0 states weakly populated:

δN = N −N0 � N as T � Tc.

This spectacular quantum phenomenon, known as Bose-Einstein condensation, was predicted in
the case of noninteracting bosons by Einstein in 1925 and was first observed in an ultracold vapor
of rubidium-87 atoms by the group of Cornell and Wieman in 1995.

5 As implicitly stated in the introduction of the tutorial, T is here supposed to be much lower than
Tc. Demonstrate that this makes it possible to split Ψ̂(r) in the form

Ψ̂(r) =
√
n0 + δΨ̂(r),

where the c-number2
√
n0 involves the density of the condensate,

n0 =
N0

L3
, and where δΨ̂(r) =

1

L3/2

∑
k 6=0

eik·r â(k)

is a small quantum correction to
√
n0.

2This is an old nomenclature used by Dirac, which refers to “classical,” commuting quantities, in opposition to
the terminology “q-number,” which refers to “quantum,” noncommuting quantities.
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6 Using the previous splitting of Ψ̂(r), expand the grand-canonical Hamiltonian K̂ of Question 3 in
powers of δΨ̂(r) and δΨ̂†(r), retaining only the linear and quadratic terms, and cast it in the form

K̂ = K0 + K̂1 + K̂2 + · · ·, where

K0 =

(
gn0

2
− µ

)
N0,

K̂1 = (gn0 − µ)
√
n0

∫
[δΨ̂(r) + δΨ̂†(r)] d3r,

K̂2 =

∫ {
~2

2m
∇δΨ̂†(r) · ∇δΨ̂(r) + (2 gn0 − µ) δΨ̂†(r) δΨ̂(r) +

gn0

2
[δΨ̂2(r) + (δΨ̂†)2(r)]

}
d3r,

and “· · ·” refers to the terms we chose to neglect.

7 Infer that the “condensate wavefunction”
√
n0 extremizes K̂ if, and only if,

µ = gn0,

which we consider from now on. Our quantum many-body system is then described by the follow-
ing effective quadratic grand-canonical Hamiltonian:

K̂B = K0 + K̂2

= −gn0

2
N0 +

∫ {
~2

2m
∇δΨ̂†(r) · ∇δΨ̂(r) + gn0 δΨ̂

†(r) δΨ̂(r) +
gn0

2
[δΨ̂2(r) + (δΨ̂†)2(r)]

}
d3r,

known as the Bogoliubov Hamiltonian.

Bogoliubov Spectrum

At this stage, K̂B is not diagonal in the operators δΨ̂(r) and δΨ̂†(r) [or â(k) and â†(k)].3 To diago-
nalize it, we introduce the so-called Bogoliubov transformation

â(k 6= 0) 7−→ b̂(k) = u(k) â(k)− v(k) â†(−k),

where u and v are real functions of k = |k|.

8 Which constraint do the so-called Bogoliubov amplitudes u(k) and v(k) have to satisfy in order for
the Bogoliubov transformation to be canonical, that is, such that

[b̂(k), b̂†(k′)] = [â(k), â†(k′)] = δk,k′ and [b̂(k), b̂(k′)] = [â(k), â(k′)] = 0?

Infer that there exists a hyperbolic angle θ(k) such that

u(k) = cosh θ(k) and v(k) = sinh θ(k).

3That is, not of the form
∫
δΨ̂†(r) (Something) δΨ̂(r) d3r [or

∑
k 6=0 â

†(k) (Something) â(k)].
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9 Express δΨ̂(r) in the form

δΨ̂(r) =
1

L3/2

∑
k 6=0

[u(k) eik·r b̂(k) + v(k) e−ik·r b̂†(k)]

and show that

K̂B = E0 +
∑
k 6=0

{[(
~2 k2

2m
+ gn0

)
(u2(k) + v2(k)) + 2 gn0 u(k) v(k)

]
b̂†(k) b̂(k)

+

[(
~2 k2

2m
+ gn0

)
u(k) v(k) +

gn0

2
(u2(k) + v2(k))

]
[b̂(k) b̂(−k) + b̂†(k) b̂†(−k)]

}
, where

E0 = −gn0

2
N0 +

∑
k 6=0

[(
~2 k2

2m
+ gn0

)
v2(k) + gn0 u(k) v(k)

]
.

10 We force K̂B to become diagonal in the operators b̂(k) and b̂†(k) by canceling out the coefficient
weighting the nondiagonal operator b̂(k) b̂(−k) + b̂†(k) b̂†(−k). Infer that

θ(k) =
1

2
ln

[
EB(k)

~2 k2/(2m)

]
,

where we introduced the celebrated Bogoliubov dispersion relation

EB(k) =

√
~2 k2
2m

(
~2 k2
2m

+ 2 gn0

)
, hence

u(k)± v(k) =

[
~2 k2/(2m)

EB(k)

]±1/2
and

K̂B = E0 +
∑
k 6=0

EB(k) b̂†(k) b̂(k).

We will not tackle the calculation of E0, which suffers from a subtle—but unphysical—ultraviolet
divergence. This divergence originates from the approximation of V (|r− r′|) by a δ-peak and
may be cured by means of a suitable renormalization of the ground state, for instance detailed
in Cohen-Tannoudji’s lectures at the Collège de France (available on the Internet).

11 The final result for K̂B has a deep physical meaning. Comment.

12 Express EB(k) in the form

EB(k) = gn0

√
k2 ξ2

2

(
k2 ξ2

2
+ 2

)
, where ξ =

~
√
mgn0

is called the healing length. Show that the quantum fluctuations of the homogeneous system are
phonons (sound waves) in the low-wavenumber limit k ξ � 1, and (gapped) free particles when
k ξ � 1. Plot EB(k) as a function of k.
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Quantum Depletion of the Condensate and One-Body Density
Matrix

13 The average value of some quantum operator f̂ in the statistical ensemble with grand-canonical
Hamiltonian K̂B is defined as

〈f̂〉 =
tr{f̂ exp[−K̂B/(kB T )]}
tr{exp[−K̂B/(kB T )]}

,

where kB is the Boltzmann constant. Verify that

〈b̂†(k) b̂(k′)〉 = n(k) δk,k′ , 〈b̂(k) b̂†(k′)〉 = [1 + n(k)] δk,k′ , and 〈b̂(k) b̂(k′)〉 = 0,

where n(k) is to determine as a function of EB(k) and kB T . What does n(k) equal to when T = 0?

14 Express the number of atoms with wavevector k 6= 0,

N(k) = 〈â†(k) â(k)〉,

as a function of u(k), v(k), and n(k).

15 Show that the depletion of the condensate,

δN =
∑
k 6=0

N(k),

is nonzero at T = 0. This result is very surprising. Comment.

16 The degree of quantum coherence of the system is characterized by its one-body density matrix

n(1)(r, r′) = 〈Ψ̂†(r) Ψ̂(r′)〉.

Show that

n(1)(r, r′) = n0 +
1

L3

∑
k 6=0

N(k) eik·(r−r
′).

How does this equation make it possible to extract δN? After replacing the sum over k 6= 0 by an
integral, demonstrate that

n(1)(r, r′) = n0 +O

(
1

|r− r′|2

)
as |r− r′|/ξ � 1.

Conclude on the long-range coherence of the quantum many-body system.
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