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Acoustic black holes in Bose—Einstein condensates
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One-dimensional acoustic black holes
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Acoustic black holes in quasi-one-dimensional atomic condensates
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Quantum fluctuations around the background: Bogoliubov approach

[0(e,1) = U(2) + (2. 1) with < V]
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One-body Hawking signal

Radiated power

e Energy current associated to the emission
of elementary excitations:

2
T(z,t) = —2% 8: 9T (z,t) 0, ¥(z,t) + He.

e Deep outside the black hole and at zero
temperature:
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Hawking temperature

Knowledge of the exact low-w behavior of
Su,d2(w) up to O(v/w) => Analytical
estimates of the gray-body factor and the
Hawking temperature:
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Two-body Hawking signal

d-peak configuration Waterfall configuration
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Two-body Hawking signal in momentum space
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Acoustic black holes in Bose—Einstein condensates: Conclusions

e Bose-Einstein condensates offer interesting prospects to observe a spontaneous—so fully
quantum—Hawking-like radiation.

e New sonic-hole configurations of experimental interest

e Analytical formula for the Hawking temperature Ti; Ty < Texp: the one-body Hawking
signal is lost in the thermal noise, but. ..

e ...nonlocal two-body correlations (in position and momentum space) provide a clear
qualitative signature of the occurrence of Hawking radiation, even at finite temperature.

e The compressibility sum rule at zero temperature is verified in the presence of an acoustic
horizon.
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Waves in the flow of a polariton condensate
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Microcavity polaritons
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Polariton condensation

Laser wave

e Interacting bosons NN -

e Spontaneous appearance of temporal coherence and
long-range spatial coherence UB
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Superfluidity in polariton condensates

Landau criterion

o Weakly perturbing obstacle moving at
constant velocity V in a conservative
quantum fluid at zero temperature

e —> There can exist a critical velocity
Verit such that:

— When V < V.t, no excitation is
emitted away from the obstacle and
there is no drag force: Fj =0
(superfluid regime);

— When V > Vi, a Cherenkov
radiation of linear waves occurs and
the obstacle is subject to a finite drag-
force: Fy # 0 (dissipative regime).
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Nonresonantly-pumped polariton condensates at zero temperature: a
simple one-dimensional model

Phenomenological modification of the Gross—Pitaevskii equation

lat'l/}: 7%811’1114‘ Uext(ft,t)’l,[)+p’l[)+ly 172 P

e (z,t): condensate wavefunction (scalar because g ==T)
o p(z,t) = |¢(z, t)|?: longitudinal density
o Uecxi(z,t): potential of an external obstacle

Op =np 1 = (Gains due to pumping) — (Losses o< 1/7) > 0

O = —n Y29 Gain saturation
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Uniform and stationary solution in the
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Finite-size obstacle moving at constant
velocity —Vx, V > 0:
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Flow past a weakly perturbing impurity: From viscous drag to wave

resistance
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Counterintuitive effect
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Viscous effects reduce the amplitude of the wake and
diminish the wave resistance which is the dominant
source of drag when V' > V.
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Waves in the flow of a polariton condensate: Conclusions

e Analysis of the one-dimensional flow of a nonresonantly-pumped scalar polariton
condensate past a localized obstacle at zero temperature

e Weak-perturbation limit: smooth crossover from a viscous flow to a regime where the drag
is mainly dominated by wave resistance

e Onset of (damped) Cherenkov radiation at a velocity Verit(n)/cs < 1 only depending on
the damping parameter n (~ pumping and losses processes in the system)

e Absence of long-range wake # absence of dissipation

e Whitham modulation theory and hydraulic approximation in the case of a supersonic fluid
flowing past a d-peak impurity of arbitrary amplitude

Dispersive
shock wave

p(z)

5F == Numerical solution
— Whitham theory

— Hydraulic approximation
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Hawking radiation in a two-component condensate
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Polarization hydrodynamics in a spinor polariton condensate

Phenomenological model
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Linearized theory
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A simple black-hole configuration in the one-dimensional flow of a
two-component condensate
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Hawking radiation of polarization waves
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Hawking radiation in a two-component condensate: Conclusions

e Analysis of the one-dimensional flow of a nonresonantly-pumped spinor polariton
condensate past a small localized obstacle at zero temperature and in the presence of a
magnetic field transverse to the condensate

e Ejection of a weakly damped polarization-wave: does it make it possible to probe
Hawking-like radiation in spinor polariton condensate?

e Simple realization of an acoustic horizon in the flow of a one-dimensional two-component
condensate

e The horizon affects only the polarization modes and not the density ones.

e The (one- and the) two-body signal associated to the analog of spontaneous Hawking
radiation consists only in the emission of polarization waves.

Palaiseau: LCF
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